

Gate G100/G110

Programovatelný linuxový převodník a logický kontrolér

www.unipi.technology

Obsah

1	Úvod	I	2
	1.1	Co je Unipi Gate?	2
	1.2	Co se dá s Unipi Gate dělat?	2
	1.3	Jaké verze kontrolérů Gate jsou dostupné?	2
	1.4	Shoda se směrnicemi	2
2	Insta	lace a zapojení	3
	2.1	Základní pokyny	3
	2.1.1	Základní popis jednotek Gate	3
	2.2	Popis indikačních LED	3
	2.2.1	Běžný mód	4
	2.2.2	Servisní mód	4
	2.3	Popis konektorů	4
	2.4	Mapování sériových portů v Linuxu	4
	2.5	Instalace zařízení	4
	2.5.1	Montáž	4
	2.5.2	Demontáž	6
	2.6	Zapojení	6
	2.6.1	Připojení napájení	6
	2.6.2	Připojení komunikačních linek RS485	6
3	Softv	vare řídících jednotek	7
	3.1	Základní nastavení	7
	3.1.1	Konfigurace sítě	7
	3.1.2	Spuštění systému	8
	3.1.3	Servisní mód	8
4	Tech	nické údaje	10
	4.1	Napájení	10
	4.2	Rozhraní RS485	10
	4.3	Ostatní I/O porty a rozhraní	10
	4.4	Provozní a instalační podmínky	10
	4.5	Rozměry a hmotnost	10
	4.5.1	Unipi Gate – montáž na DIN lištu	11
	4.5.2	DIN držák	11
	4.5.3	Unipi Gate – montáž na stěnu	11
	Revize.		11

1 Úvod

1.1 Co je Unipi Gate?

Unipi Gate je programovatelný linuxový převodník a logický kontrolér (PLC), disponující dvěma ethernetovými a dvěma (jedním) RS485 porty. Díky softwarové otevřenosti je univerzální bránou v oblasti průmyslových automatizací a MaR aplikací. V nich může figurovat jako ovládací prvek, nebo jako zařízení pro sběr dat pro nadřazené SCADA a MES systémy. S konektivitou do internetu se pak stává ideálním kandidátem pro oživení starých, tzv. "brownfield" instalací. Může být nasazeno v aplikacích jako koncové zařízení cloudových služeb, které jsou základem pro trendy Smart City, Smart Factory, IoT, IIoT a Edge Computing, těžící z velkého množství nasbíraných dat.

1.2 Co se dá s Unipi Gate dělat?

Díky variabilitě počtu sériových linek v kontrolérech lze produkty z řady Gate využít v různých realizacích, jako například:

- Ovládání zařízení se sběrnicí RS485 (tepelná čerpadla, klimatizace apod.)
- Převodník sériové komunikace do ethernetu (internetu)
- Systémy pro monitoring a sběr dat
- Průmyslové automatizace a MaR aplikace
- Systémy SCADA a MES
- Komplexní realizace (ovládání kotelen a kaskád bojlerů, vzduchotechnika)
- Projekty Smart City a Smart Factory
- Projekty ve sféře loT a lloT
- V rámci aplikací Průmysl 4.0 jako jednotky pro Cloud computing nebo Edge computing
- Modernizace starších instalací

1.3 Jaké verze kontrolérů Gate jsou dostupné?

Následující tabulka zobrazuje konfigurace počtu komunikačních rozhraní kontrolérů řady Gate.

Model	RS485	1Gbit	100Mbit
G100	1	1	1
G110	2	1	1

Každý kontrolér přitom disponuje následujícím vlastnostmi:

CPU	RAM	eMMC	Ostatní
4×600 MHz	512 MB	16 GB	Uživatelská LED

1.4 Shoda se směrnicemi

EMC: 2014/30/EU	
RoHS: 2015/863/EU	
WEEE: 2012/19/EU	

J unipi technology

2 Instalace a zapojení

2.1 Základní pokyny

Při instalaci vždy dodržujte následující pokyny:

- Ujistěte se, že splňujete aktuální normy a pravidla a také všechny státní a regionální předpisy.
- Před jakoukoliv manipulací (montáž/demontáž) vždy vypněte napájení.
- Použijte kabely s příslušným průřezem vodiče.
- Nepřekračujte utahovací moment svorek.
- Dodržujte provozní a instalační podmínky.
- Použijte, pokud možno, co nejkratší přívodní kabely. V případě delších kabelů použijte stíněné kabely. Kabely veďte v párech, tj. jeden vodič nulový a druhý signalizační.
- Zajistěte oddělení kabeláže střídavého napětí, vysokonapět'ové obvody stejnosměrného napětí s vysokofrekvenčními spínacími cykly a signálové vodiče.
- Zajistěte, aby vodiče byly instalovány s příslušným odlehčením namáhání.
- Instalace zařízení musí být provedena ve stálé a uzavřené instalační skříni nebo boxu.

Poznámka

Zařízení musí být instalováno kvalifikovanou osobou, která zná a dodržuje dané předpisy a normy.

Varování

Jedná se o otevřené zařízení. Může dojít ke značné škodě na majetku, tělesnému poranění či smrti. Skříň, v níž je zařízení instalováno, musí být přístupná pouze s použitím klíče nebo nástroje. Přístup k zařízení může být povolen pouze oprávněným pracovníkům.

2.1.1 Základní popis jednotek Gate

Unipi Gate je založen na čtyřjádrovém procesoru ARM A53 o frekvenci 600 MHz. Ten v kombinaci s 512 MB RAM převodníku poskytuje dostatek výpočetního výkonu i pro náročné aplikace. Jako úložiště slouží interní eMMC pamět' o kapacitě 16 GB, kterou můžete v případě potřeby rozšířit pomocí microSD karty.

Rozhraní RS485 je určeno pro sériovou komunikaci (např. protokolem Modbus) a lze jej využít pro řízení a monitoring různých externích zařízení jako jsou např. kotle, vzduchotechnika, elektromotory, měřiče energií, různé převodníky, případně i rozšiřující moduly či PLC jiných výrobců.

Dvojice Ethernetových portů o rychlosti 1 Gbit a 100 Mbit slouží pro síťovou komunikaci do internetu či se zařízeními v lokální sítí. Převodník lze také využít jako síťový switch (režim bridge), případně jako propojovací uzel dvou oddělených sítí.

2.2 Popis indikačních LED

Název	Funkce	Význam	Barva
PWR	Svítí/Nesvítí	Indikace zapnutí/vypnutí jednotky	Červená
ACT	Bliká	Indikace stavu jednotky	Zelená
ACT – uživ. nast.	Volitelná	Dle nastavení (viz. popis níže)	Zelená
TX (RS485-1)	Svítí	Indikace vysílání na 1. sériové lince	Zelená
RX (RS485-1)	Svítí	Indikace přijímání na 1. sériové lince	Zelená
TX (RS485-2)	Svítí	Indikace vysílání na 2. sériové lince	Zelená
RX (RS485-2)	Svítí	Indikace přijímání na 2. sériové lince	Zelená
Porty ETH	Svítí	Spojení je navázáno	Zelená
	Nesvítí	Spojení není navázáno	Zelená
	Bliká	Probíhající komunikace	Žlutá
	Nesvítí	Spojení není navázáno	Žlutá

Kromě výše uvedeného popisu chování jednotlivých LED jsou všechny diody použity pro indikaci následujících událostí a stavů (vyjma PWR LED):

2.2.1 Běžný mód

Popis chování LED	Význam	Nesvítí	Svítí	Nesvítí
ACT dlouze svítí	Startování zavaděče (uboot)	3000 ms	1750 ms	-
ACT krátce blikne	Zavaděč je spuštěn	250 ms	75 ms	1000 ms
ACT dvakrát blikne	Načítání OS	250 ms	75 ms	-
ACT trvale svítí a opakovaně na krátkou dobu pohasíná	OS běží a zařízeni je připraveno k použití	50 ms	2000 ms	-

2.2.2 Servisní mód

Popis chování LED	Význam	Nesvítí	Svítí	Nesvítí
ACT dlouze svítí	Startování zavaděče (uboot)	3000 ms	>5000 ms	-
ACT krátce blikne	Zavaděč je spuštěn	250 ms	75 ms	1000 ms
ACT dvakrát blikne	Načítání OS	250 ms	75 ms	-
ACT, TX a RX pomalu blikají	Zařízení je v servisním módu	600 ms	600 ms	-

Poznámka

Jednotky Gate disponují volně uživatelsky programovatelnou diodou označenou ACT, která se ovládá standardním Linuxovým způsobem. V OS je tato LED dostupná v /sys/class/leds/unipi-sysled-xh a v továrním nastavení je nastavena na funkci "timer". Ovládání diody se provádí změnou funkce v souboru trigger ve výše uvedeném adresáři (echo "timer" > trigger).

2.3 Popis konektorů

Název svorky	Význam
RS485-END	Připínatelný zakončovací odpor RS485
RS485-A/RS485-B	Připojovací svorky A a B rozhraní RS485
VCC	Kladný pól napájecího zdroje
GND	Záporný pól napájecího zdroje
ETHO	10/100 Mbit/s rozhraní ethernet
ETH1	10/100/1000 Mbit/s rozhraní ethernet

2.4 Mapování sériových portů v Linuxu

Model	RS485-1	RS485-2
G100	/dev/ttyS1	-
G110	/dev/ttyS1	/dev/ttyS2

2.5 Instalace zařízení

2.5.1 Montáž

Všechny jednotky Gate jsou konstrukčně řešeny pro montáž na 35 mm DIN lištu EN 50022. Volitelně lze objednat držák pro montáž na stěnu.

2.5.1.1 Montáž na DIN lištu

Jednotku lze upevnit na DIN lištu třemi různými způsoby (viz obrázky níže). Pokud není nainstalován držák na DIN lištu, je nutné jej nejdříve připevnit pomocí dodaných šroubků a to tak, aby pružina byla směrem k zamýšlené horní části zařízení. Montáž produktu na lištu se provádí zasunutím produktu shora na lištu, přetažením síly pružiny směrem dolů a následným zacvaknutím spodní části.

😈 unipi technology

Poznámka

Dbejte na to, aby vrchní hrana DIN lišty zajela mezi pružinu a zadní část DIN držáku.

2.5.1.2 Montáž na stěnu

Pomocí volitelného příslušenství se dají jednotky Gate přichytit na montážní desku rozvaděče. Přiložte nejprve první držák k jednotce Gate tak, aby se kryly otvory 1 a 2 (viz. obrázek). Zajistěte přiloženými šrouby. Postup opakujte i s druhým držákem a otvory 3 a 4. Naměřte a vyvrtejte otvory do montážní desky. Pro uchycení jsou vhodné šrouby s plochou hlavou a průměrem max. 4 mm.

Varování

V instalační skříni bez nuceného oběhu vzduchu, kde je produkt instalován, musí být mezi stěnami skříně a zařízením zajištěn rozestup min 80 mm. Pokud není možné zajistit dostatečnou samovolnou cirkulaci vzduchu v instalační skříni, je nutné zajistit cirkulaci zabudováním ventilátoru. Maximální teplota vzduchu vstupujícího do zařízení nesmí přesáhnout hodnoty uvedené v kapitole 4.4

2.5.2 Demontáž

Demontáž jednotky z DIN lišty se provádí opačným postupem, tj. vysunutím produktu přes odpor pružiny dolů a následným vytažením zařízení směrem od lišty. V případě jednotky přichycené k montážní desce rozvaděče nejprve odšroubujte šrouby, které ji fixují k desce a následně odšroubujte oba držáky z jednotky.

Poznámka

Před demontáží se ujistěte, že je zařízení odpojeno od zdroje napětí.

2.6 Zapojení

Pro připojení kabelů k zařízení jsou použity oddělitelné šroubové svorky. Význam každého pólu svorky je popsán na krabičce. Pro montáž kabelů do svorek používejte plochý šroubovák s velikostí 3 mm až 3,5 mm pro napájecí svorky a 2 mm až 2,5 mm pro svorky datové. Nepřekračujte maximální utahovací moment uvedený v technických specifikacích produktu (kapitola 4.4) a v katalogovém listu produktu.

2.6.1 Připojení napájení

Pro správný běh zařízení je nutné připojit napájecí napětí v rozsahu 6-36 V DC na svorky VCC (kladný pól) a GND (záporný pól) napájecího konektoru. Informace o toleranci doporučeného napájecího napětí a spotřebě elektrické energie jsou uvedeny v technické specifikaci produktu (kapitola 4.4), katalogovém listu produktu a na výrobním štítku.

Upozornění

Jedná se o zařízení třídy I. Je tedy nutné připojit i ochranný zemnící vodič na zemnící konektor označený symbolem D. Pro připojení zemnícího vodiče použijte kabelové oko a dodaný šroub M4 s vějířovou podložkou.

2.6.2 Připojení komunikačních linek RS485

Připojení komunikační linky RS-485 (EIA-485) se provádí na svorky konektoru RS-485 označené jako A a B. Zařízení disponuje volitelně připojitelným 120 Ω zakončovací odporem (terminátor), označený jako END (RS485-END).

Poznámka

Pro správnou funkci linky je nutné připojit zakončovací odpor na obou koncích linky.

J unipi technology

3 Software řídících jednotek

Díky otevřenosti celého systému není uživatel omezen pouze na jedeno softwarové řešení pro řízení a konfiguraci celého systému. Přehled a návod na použití všech kompatibilních softwarových platforem je dostupný na stránkách <u>www.unipi.technology</u> případně na domovských stránkách dané softwarové platformy.

Srdcem Unipi Gate je operační systém Debian OS (Linux), který umožňuje uživatelům upravovat systém dle jejich požadavků. Pro práci s jednotlivými sériovými linkami je díky otevřenému systému možné využít několik způsobů. Způsoby programování a ovládání jednotek jsou rozděleny do tří skupin:

- Mervis oficiální podporované kompletní aplikační řešení pro řízení a monitoring technologií včetně online volitelných cloudových služeb
 - DB ukládání a analýza historický dat
 - PROXY vzdálené programování technologie
 - SCADA online správa technologie
- Open source oficiálně podporovaný obraz OS s předinstalovaným vývojovým prostředím
 - Node-RED otevřený webový programovací nástroj, který k programování aplikací využívá tzv. flow-based přístup. Obraz OS je ke stažení na <u>https://kb.unipi.technology</u>
- Zákaznické řešení nebo komerční aplikace třetích stran univerzální rozhraní pro přístup k IO pro programátory
 - o Implementace Vašeho SW, přístup k sériovým linkám standardním Linuxovým způsobem
 - o Modbus TCP standartní rozhraní na bázi TCP
 - Možnost instalace aplikací třetích stran
 - Podpora Python, C, C++

Díky otevřené povaze celého řešení naši partneři a zákazníci mohou implementovat svoje softwarové řešení a tím poskytnout OEM produkt pod svou značkou na míru.

Další informace a návody jsou k dispozici na https://kb.unipi.technology.

3.1 Základní nastavení

Použitý operační systém je Debian s předinstalovanými ovladači pro platformu Gate. Standardně je i předinstalována aplikace Node-RED včetně nodů, umožňujících snadné propojení se zařízeními komunikujícími pomocí Modbus RTU.

3.1.1 Konfigurace sítě

Unipi Gate disponují rozhraním označeným jako eth0 (100Mbit) a eth1 (1Gbit). Ve výchozím nastavením jsou rozhraní spojena do síťového mostu (bridge br0) a chovají se tak jako dvou portový switch. Je tedy jedno, kterým portem jednotku zapojíte do místní sítě. MAC adresa rozhraní br0 je převzata z rozhraní eth0.

Upozornění

Jednotku s takto nastavenými rozhraními zapojujte do místní sítě pouze jedním kabelem! V případě připojení obou rozhraní do stejné sítě může dojít k vyřazení komunikace v celé síti!

Jednotka má nastaveno automatické získání IP adresy z DHCP serveru. V případě neúspěšného pokusu jednotka nastaví na rozhraní náhodnou IP adresu z rozsahu 169.254.0.0 – 169.254.255.255. Do sítě je také publikován mDNS záznam (neplatí pro servisní mód) a jednotka je tak dostupná v sítí pod unikátním názvem. Pro jednotku G100 se sériovým číslem 123 je název "g100-sn123.local". Sériové číslo naleznete na výrobním štítku.

3.1.2 Spuštění systému

- 1. Připojte jednotku k místní síti nebo přímo k PC pomocí síťového kabelu.
- 2. Připojte k jednotce napájecí zdroj dle údajů na výrobním štítku jednotky a vyčkejte až jednotka nastartuje do plného běhu (viz kapitola 2.1 popis chování indikačních LED).
- 3. Po nastartování je jednotka přístupná v sítí přes IP adresu nebo unikátní název:
 - a. Uvítací stránka s odkazem do Node-RED administrace je dostupná přes webový prohlížeč na http://<ip-adresa> nebo http://<nazev> (např. "g100-sn123.local", viz kapitola 3.1.1)
 - b. SSH přístup je povolen na portu 22, uživatelské jméno je "unipi", heslo "unipi.technology".

Upozornění

Z bezpečnostních důvodů při aktivním SSH přístupu doporučujeme změnit výchozí heslo. Pro změnu hesla se připojte k SSH a po spuštění příkazu "**passwd"** budete vyzvání pro zadání aktuálního hesla "unipi.technology", následně pro zadání nového hesla a nakonec zadáte znovu nové heslo pro potvrzení. SSH přístup se dá také zakázat v servisním menu. Více na <u>https://kb.unipi.technology.</u>

Rozhraní Node-RED editoru je dostupné ve webovém prohlížeči na <u>http://<ip-adresa>:1880/</u>. Více informací o tomto webovém programovacím nástroji získáte na stránkách <u>https://nodered.org</u>.

Upozornění

V továrním nastavení není Node-RED editor zabezpečen. Kdokoliv, kdo se může připojit k jeho adrese v rámci sítě, může provádět změny v programu a nastavení. Pro zabezpečení postupujte dle dokumentace na stránkách <u>https://nodered.org</u>.

3.1.3 Servisní mód

Servisní mód je režim PLC určený pro obnovení přístupu k PLC (obnovení výchozího hesla přehráním OS, změna nastavení síťového režimu, nebo povolení či zakázání SSH přístupu) a nahrání nebo zálohování operačního systému. Jednotka v tomto režimu zpřístupní pouze servisní webové rozhraní, ostatní funkce jsou zakázány. V tomto režimu není publikován mDNS záznam.

- 1. Připojte jednotku k místní síti nebo přímo k Vašemu PC pomocí síťového kabelu.
- 2. Stiskněte a nepouštějte tlačítko "SERVICE" na čelní straně jednotky.
- 3. Připojte k jednotce napájecí zdroj.
- 4. Jednotka nastartuje do servisního módu indikovaném pomalým blikáním ACT, TX a RX LED.
- 5. Nyní můžete tlačítko uvolnit.
- 6. Jednotka si nastaví IP adresu 192.168.200.200 a zároveň se pokusí získat IP adresu z DHCP serveru. Jednotka bude posléze dostupná na obou IP adresách.
- 7. K přístupu k servisnímu rozhraní použijte webový prohlížeč a zadejte IP http://<ip-adresa>

Poznámka

V servisním módu jsou obě síťová rozhraní v režimu síťového mostu (bridge br0), ale je zkázáno přeposílání paketů mezi rozhraními (L2 forwarding). Jednotka se tedy nebude chovat jako switch.

3.1.3.1 Přehrání operačního systému

Operační systém (OS) v jednotce lze přehrát za pomoci servisního webového rozhraní nebo USB flash disku.

Upozornění

Při přehrání dojde ke smazání všech dat na interním úložišti jednotky.

unipi technology

3.1.3.2 Přehrání pomocí servisního webového rozhraní

- Z Knowledge Base (<u>https://kb.unipi.technology</u>) stáhněte a rozbalte OS obraz pro jednotku Unipi Gate.
- 2. Přepněte jednotku do servisního módu a otevřete servisní rozhraní v prohlížeči. Servisní mód je indikován pomalým blikáním ACT, TX a RX LED.
- 3. Přetáhněte soubor *archive.swu* z rozbaleného archivu do dialogu Software Update v servisním rozhraní.
- 4. Vyčkejte, než jednotka dokončí operaci průběh přehrání lze sledovat v dialogu Messages a zároveň je indikován rychlým blikáním ACT, TX a RX LED.
- 5. Po dokončení přehrání se jednotka automaticky restartuje.

3.1.3.3 Přehrání OS za pomocí USB flash disku

- Z Knowledge Base (<u>https://kb.unipi.technology</u>) stáhněte ZIP archiv s obrazem operačního systému.
- 2. Připravte si USB flash disk s minimálně 2GB volného místa (formát FAT32).
- 3. Obsah ZIP archivu extrahujte na USB flash disk.
- 4. Vložte USB flash disk do portu USB.
- 5. Stiskněte a nepouštějte tlačítko "SERVICE" na čelní straně jednotky a připojte jednotku k napájení.
- Jednotka začne přehrávat OS což je indikováno rychlým blikáním ACT, TX a RX LED. V tuto chvíli můžete tlačítko pustit.
- 7. Po dokončení přehrání přestanou LED blikat. Jednotka se automaticky restartuje.

Poznámka

Některé USB flash disky nemusí být kompatibilní. Pokud Váš flash disk nefunguje, vyzkoušejte jiný nebo použijte postup pro přehrání OS přes webové rozhraní.

3.1.3.4 Zálohování OS na USB flashdisk

- 1. Připravte si USB flash disk ve formátu FAT32 s kapacitou minimálně 2 GB.
- 2. Spusť te zařízení v servisním módu popsaném výše.
- 3. Klikněte na tlačítko "Backup to USB flash" v dialogovém okně pod nadpisem "Backup" v servisním webovém rozhraní.
- 4. Jednotka zahájí zálohování OS indikované rychlým blikáním ACT, TX a RX LED.
- Po dokončení zálohování se v servisním webovém rozhraní zobrazí hláška "Updated successfully", fyzicky na zařízení je dokončení zálohování indikováno zpomalením blikání ACT, TX a RX LED (indikace servisního módu).
- 6. Vyjměte USB flash disk z jednotky. Ověřte na jiném zařízení, zda se na něm nachází soubory se zálohou.
- 7. Nyní můžete zařízení restartovat pomocí tlačítka "Restart System" v pravém horním rohu servisního webového rozhraní, nebo přerušením napájení.

4 Technické údaje

4.1 Napájení

Jmenovité napětí - SELV	6 – 36 V DC
Příkon	Тур. 3 W, Max. 12W
Ochrana proti přepólování	Ano

4.2 Rozhraní RS485

Svorky	RS485-A, RS485-B
Galvanické oddělení	Ano
Izolační napětí	1000 V
ESD ochrana	±15 kV
Přenosové rychlosti	2 400 bps, 4 800 bps, 9 600 bps, 19 200 bps, 38 400 bps, 57 600
	bps, 115 200 bps
Vstupní impedance	12 kΩ
Vstupní napěťová hystereze	70 mV
Výstupní charakteristika	±2,5 V
RS485 pull-up/pull-down odpory	Ano, 560 Ω

4.3 Ostatní I/O porty a rozhraní

Port ETH0	10/100 Mbit/s ethernet
Port ETH1	10/100/1000 Mbit/s ethernet
USB Port	USB 3.0 (pro servisní účely)
Ext. paměťové úložiště	Micro SD až do velikosti 128GB

4.4 Provozní a instalační podmínky

Provozní teplota	0 °C 55 °C, relativní vlhkost 10 % 95 %, bez agresivních látek, kondenzujících par a mlh	
Skladovací podmínky	-25 °C +70 °C, relativní vlhkost 10 % 95 %, bez agresivních látek, kondenzujících par a mlh	
Stupeň krytí IP (IEC 529)	IP20	
Pracovní poloha	Horizontální / Vertikální	
Instalace	Na 35 mm DIN lištu do rozvaděče a volitelně i na montážní desku rozvaděče	
Připojení	Oddělitelné šroubové svorky	
Průřez vodičů	Max. 2,5 mm² pro napájení, max 1,5 mm² pro RS485	
Utahovací moment svorek	Max. 0,4 Nm	

4.5 Rozměry a hmotnost

Rozměry	35 × 94 × 70 mm
Hmotnost	137 g (G100) / 140 g (G110)

4.5.1 Unipi Gate – montáž na DIN lištu

4.5.3 Unipi Gate – montáž na stěnu

Revize

Datum	Verze
15.12.2020	V 1.0
16.4.2021	V 1.1